
Solving Differential
Equations
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Introduction
In this Section we employ the Laplace transform to solve constant coefficient ordinary differential
equations. In particular we shall consider initial value problems. We shall find that the initial
conditions are automatically included as part of the solution process. The idea is simple; the Laplace
transform of each term in the differential equation is taken. If the unknown function is y(t) then, on
taking the transform, an algebraic equation involving Y (s) = L{y(t)} is obtained. This equation is
solved for Y (s) which is then inverted to produce the required solution y(t) = L−1{Y (s)}.
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Prerequisites
Before starting this Section you should . . .

• understand how to find Laplace transforms of
simple functions and of their derivatives

• be able to find inverse Laplace transforms
using a variety of techniques

• know what an initial-value problem is�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• solve initial-value problems using the Laplace
transform method
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1. Solving ODEs using Laplace transforms
We begin with a straightforward initial value problem involving a first order constant coefficient
differential equation. Let us find the solution of

dy

dt
+ 2y = 12e3t y(0) = 3

using the Laplace transform approach.

Although it is not stated explicitly we shall assume that y(t) is a causal function (we have no interest
in the value of y(t) if t < 0.) Similarly, the function on the right-hand side of the differential equation
(12e3t), the ‘forcing function’, will be assumed to be causal. (Strictly, we should write 12e3tu(t) but
the step function u(t) will often be omitted.) Let us write L{y(t)} = Y (s). Then, taking the Laplace
transform of every term in the differential equation gives:

L{dy

dt
}+ L{2y} = L{12e3t}

Now

L{dy

dt
} = −y(0) + sY (s) = −3 + sY (s)

L{2y} = 2Y (s) and L{12e3t} =
12

s− 3

Substituting these expressions into the transformed version of the differential equation gives:

[−3 + sY (s)] + 2Y (s) =
12

s− 3

Solving for Y (s) we have

(s + 2)Y (s) =
12

s− 3
+ 3 =

3 + 3s

s− 3

Therefore

Y (s) =
3(s + 1)

(s + 2)(s− 3)

Now, using partial fractions, this last expression can be written in a more convenient form:

Y (s) =
3/5

(s + 2)
+

12/5

(s− 3)

and then, inverting:

y(t) = L−1{Y (s)} = 3
5
L−1{ 1

s + 2
}+ 12

5
L−1{ 1

s− 3
}

thus

y(t) = 3
5
e−2tu(t) + 12

5
e3tu(t)

This is the solution to the given initial value problem.
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Task

The equation governing the build up of charge, q(t), on the capacitor of an RC

circuit is R
dq

dt
+

1

C
q = v0

R C

where v0 is the constant d.c. voltage. Initially, the circuit is relaxed and the circuit
is then ‘closed’ at t = 0 and so q(0) = 0 is the initial condition for the charge.
Use the Laplace transform method to solve the differential equation for q(t).

Assume the forcing term v0 is causal.

Begin by finding an expression for Q(s) = L{q(t)}:

Your solution

Answer

Q(s) =
v0C

s(RCs + 1)
since, taking the Laplace transform of each term in the differential equation:

RL{dq

dt
}+

1

C
L{q} = L{v0}

i.e. R[−q(0) + sQ(s)] +
1

C
Q(s) =

v0

s

where, we emphasize, the Laplace transform of the constant term v0 is
v0

s
.

Inserting q(0) = 0 we have, after some rearrangement,

Q(s) =
v0C

s(RCs + 1)
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Now expand the expression using partial fractions:

Your solution

Answer

You should obtain Q(s) = v0C

[
1

s
− RC

RCs + 1

]
Now obtain q(t) by taking inverse Laplace transforms:

Your solution

Answer
q(t) = v0C(1− e−t/RC)u(t) since

L−1{1

s
} = 1 and L−1{ RC

RCs + 1
} = L−1{ 1

s + (1/RC)
} = e−t/RC

The solution to this problem is illustrated in the following diagram.

q(t)

t

v  0 C

The Laplace transform method is also applied to higher-order differential equations in a similar way.
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Example 1
Solve the second-order initial-value problem:

d2y

dt2
+ 2

dy

dt
+ 2y = e−t y(0) = 0, y′(0) = 0

using the Laplace transform method.

Solution

As usual we shall assume the forcing function is causal (i.e. is really e−tu(t).0 Taking the Laplace
transform of each term:

L{d2y

dt2
}+ 2L{dy

dt
}+ 2L{y} = L{e−t}

that is,

[−y′(0)− sy(0) + s2Y (s)] + 2[−y(0) + sY (s)] + 2Y (s) =
1

s + 1

Inserting the initial conditions and rearranging:

Y (s)[s2 + 2s + 2] =
1

s + 1
i.e. Y (s) =

1

(s + 1)(s2 + 2s + 2)

Then, using partial fractions:

1

(s + 1)(s2 + 2s + 2)
≡ 1

s + 1
− (s + 1)

s2 + 2s + 2
≡ 1

s + 1
− (s + 1)

(s + 1)2 + 1

where we have completed the square in the second term of the right-hand side. We can now take
the inverse Laplace transform:

y(t) = L−1{Y (s)} = L−1{ 1

s + 1
} − L−1{ s + 1

(s + 1)2 + 1
}

= (e−t − e−t cos t)u(t)

which is the solution to the initial value problem.

Exercises

Use Laplace transforms to solve:

1.
dx

dt
+ x = 9e2t x(0) = 3

2.
d2x

dt2
+ x = 2t x(0) = 0 x′(0) = 5

Answers 1. x(t) = 3e2t 2. x(t) = 3 sin t + 2t
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Example 2
A damped spring, constrained to move in one direction, such as might be found
in a railway buffer, is subjected to an impulse of duration 5 seconds. The spring
constant divided by the mass causing the impulse is 10 m−2 s−2 and the frictional
force divided by this mass is 2 m−2s−2.

(a) Write down the equation governing the motion in terms of the displace-
ment x m and time t seconds including the impulse u(t).

(b) Write down the initial conditions on the displacement (x) and velocity.

(c) Solve the equation for displacement as a function of time.

(d) Draw a graph of the oscillations for t = 0 to 10 s.

Solution

(a) Since the system involves a restoring force and friction, after dividing through by the
mass, the equation of motion may be written:

d2x

dt2
+ 2

dx

dt
+ 10x = u(t)− u(t− 5)

where the right-hand side represents the impulse being switched on at t = 0 s and
switched off at t = 5 s.

(b) Since the system starts from rest x(0) = x′(0) = 0.

(c) Taking the Laplace Transform of each term of the differential equation gives

L
[
d2x

dt2

]
+ 2L

[
dx

dt

]
+ 10L [x] = L [u(t)]− L [u(t− 5)]

i.e. s2X(s)− s x(0)− x′(0) + 2(s X(s)− x(0)) + 10X(s) =
1

s
− 1

s
e−5s

but as x(0) = x′(0) = 0, this simplifies to s2X(s)+2 s X(s)+10X(s) =
1

s

[
1− e−5s

]
i.e. X(s) =

1

s(s2 + 2s + 10)

[
1− e−5s

]
=

[
1

10
· 1

s
− 1

10
· s + 2

s2 + 2s + 10

] [
1− e−5s

]
(using partial fractions)

=

[
1

10
· 1

s
− 1

10
· s + 1

(s + 1)2 + 32
− 1

30
· 3

(s + 1)2 + 32

] [
1− e−5s

]
=

1

10
· 1

s
− 1

10
· s + 1

(s + 1)2 + 32
− 1

30
· 3

(s + 1)2 + 32

− 1

10
· 1

s
e−5s +

1

10
· s + 1

(s + 1)2 + 32
e−5s +

1

30
· 3

(s + 1)2 + 32
e−5s
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Solution (contd.)

so, on taking inverse Laplace Transforms,

x(t) =
1

10
− 1

10
e−t cos 3t− 1

30
e−t sin 3t

− 1

10
u(t− 5) +

1

10
e−(t−5) cos 3(t− 5)u(t− 5) +

1

30
e−(t−5) sin 3(t− 5)u(t− 5)

(d)
x(t)

t

− 0.025

0.025
0.05

0.075

0.1
0.125

2 4 6 8 10

Figure 16

According to the graph the damped spring has a damped oscillation about a displacement of 0.1
m after the start of the impulse and a damped oscillation about a displacement of zero after the
impulse has finished.

2. Solving systems of differential equations
The Laplace transform method is also well suited to solving systems of differential equations. A
simple example will illustrate the technique.
Let x(t), y(t) be two independent functions which satisfy the coupled differential equations

dx

dt
+ y = e−t

dy

dt
− x = 3e−t

x(0) = 0, y(0) = 1

Now, using a traditional approach, we could try to eliminate one of the unknown functions from this
system: for example, from the first:

dy

dt
= −e−t − d2x

dt2
(taking the derivative and rearranging)

This can then be substituted in the second equation:
dy

dt
− x = 3e−t, to give:

−d2x

dt2
− x = 4e−t
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which can then be solved in the normal way (either using the complementary function/particular
integral approach or else the Laplace transform approach.) However, this approach is not workable
if we have large numbers of first order differential equations to deal with. Let us instead use the
Laplace transform directly.
If we use the notation that

L{x(t)} = X(s) and L{y(t)} = Y (s)

then, by taking the Laplace transform of every term in the given differential equations, we obtain:

−x(0) + sX(s) + Y (s) =
1

s + 1

−y(0) + sY (s)−X(s) =
3

s + 1

which, using the initial conditions and rearranging gives

sX(s) + Y (s) =
1

s + 1

−X(s) + sY (s) =
s + 4

s + 1

Key Point 13

Taking the Laplace transform converts a system of differential equations

into a system of algebraic simultaneous equations.

We can solve these algebraic equations (in X(s) and Y (s)) using a variety of techniques (inverse
matrix; Cramer’s determinant method etc.) Here we will use Cramer’s method.

X(s) =

∣∣∣∣ 1
s+1

1
s+4
s+1

s

∣∣∣∣∣∣∣∣ s 1
−1 s

∣∣∣∣ =

s

s + 1
− s + 4

s + 1
s2 + 1

=
−4

(s2 + 1)(s + 1)
=

2(s− 1)

s2 + 1
− 2

s + 1

and

Y (s) =

∣∣∣∣ s 1
s+1

−1 s+4
s+1

∣∣∣∣∣∣∣∣ s 1
−1 s

∣∣∣∣ =

s(s + 4)

s + 1
+

1

s + 1
s2 + 1

=
s2 + 4s + 1

(s2 + 1)(s + 1)
= − 1

s + 1
+

2(s + 1)

s2 + 1
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The last lines in each case having been obtained using partial fractions. We can now invert X(s), Y (s)
to find x(t), y(t):

x(t) = L−1{X(s)} = 2L−1{ s

s2 + 1
} − 2L−1{ 1

s2 + 1
} − 2L−1{ 1

s + 1
}

= (2 cos t− 2 sin t− 2e−t)u(t)

y(t) = L−1{Y (s)} = −L−1{ 1

s + 1
}+ 2L−1{ s

s2 + 1
}+ 2L−1{ 1

s2 + 1
}

= (−e−t + 2 cos t + 2 sin t)u(t)

(Note that once the solution for x(t) is found the solution for y(t) may be easier to obtain by

substituting in the differential equation: y = e−t − dx

dt
rather than using Laplace transforms.)

Task

Use the Laplace transform to solve the coupled differential equations:

dy

dt
− x = 0,

dx

dt
+ y = 1, x(0) = −1, y(0) = 1

Begin by obtaining a system of algebraic equations for X(s) and Y (s):

Your solution

Answer
Writing L{x(t)} = X(s) and L{y(t)} = Y (s) you should obtain the set of transformed equations

−1 + sY (s)−X(s) = 0

1 + sX(s) + Y (s) =
1

s

which, when re-arranged, are

−X(s) + sY (s) = 1

sX(s) + Y (s) =
1− s

s

Now solve these equations for X(s) and Y (s):

Your solution
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Answer

X(s) = − s

1 + s2
Y (s) =

1

s
− 1

1 + s2

Now find the required solution by obtaining the inverse Laplace transforms:

Your solution

Answer
You should obtain x(t) = − cos t.u(t) and y(t) = (1− sin t).u(t). This follows since

L−1{− s

1 + s2
} = − cos t.u(t) L−1{1

s
} = u(t) L−1{− 1

1 + s2
} = − sin t.u(t)

Exercises

1. Solve the given system of differential equations for the initial conditions specified.

(a)
dx

dt
= y

dy

dt
= x x(0) = 1 y(0) = 0

(b)
dx

dt
= 4x− 2y

dy

dt
= 5x + 2y x(0) = 2 y(0) = −2

2. The Laplace transform can also be used to solve a pair of coupled second order differential
equations.

Solve, for the given initial conditions,

d2x

dt2
= y + sin t x(0) = 1 x′(0) = 0

d2y

dt2
= −dx

dt
+ cos t y(0) = −1 y′(0) = −1

(Note that the initial conditions on each of x(t) and y(t) are needed in the second order
situation.)

Answer

1. (a) x = cosh t, y = sinh t (b) x = e3t(2 cos 3t + 2 sin 3t), y = e3t(−2 cos 3t + 4 sin 3t)

2. x = cos t, y = − cos t− sin t
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3. Applications of systems of differential equations
Coupled electrical circuits and mechanical vibrating systems involving several masses in springs offer
examples of engineering systems modelled by systems of differential equations.

Electrical circuits
Consider the RL (resistance/inductance) circuit with a voltage v(t) applied as shown in Figure 17.

L1

L2

R1

R2 i1

i2

v(t)

Figure 17

If i1 and i2 denote the currents in each loop we obtain, using Kirchhoff’s voltage law:

(i) in the right loop: L1
di1
dt

+ R2(i1 − i2) + R1i1 = v(t)

(ii) in the left loop: L2
di2
dt

+ R2(i2 − i1) = 0

Task

Suppose, in the above circuit, that

L1 = 0.8 henry, L2 = 1 henry, R1 = 1.4 Ω R2 = 1 Ω.

Assume zero initial conditions: i1(0) = i2(0) = 0.

Suppose that the applied voltage is constant: v(t) = 100 volts t ≥ 0.

Solve the problem by Laplace transforms.

Begin by obtaining V (s), the Laplace transform of v(t):

Your solution
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Answer
We have, from the definition of the Laplace transform:

V (s) =

∫ ∞

0

100e−stdt = 100

[
e−st

−s

]∞
0

=
100

s

This is simply the Laplace transform of the step function of height 100.

Now insert the parameter values into the differential equations and obtain the Laplace transform of
each equation. Denote by I1(s), I2(s) the Laplace transforms of the unknown currents. (These are
equivalent to X(s) and Y (s) of the theory.):

Your solution

Answer

0.8
di1
dt

+ i1 − i2 + 1.4i1 = v(t)

di2
dt

+ i2 − i1 = 0

Rearranging and dividing the first equation by 0.8:

di1
dt

+ 3i1 − 1.25i2 = 1.25v(t)

di2
dt

− i1 + i2 = 0

Taking Laplace transforms and inserting the initial conditions i1(0) = 0, i2(0) = 0:

(s + 3)I1(s)− 1.25I2(s) =
125

s

−I1(s) + (s + 1)I2(s) = 0
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Now solve these equations for I1(s) and I2(s). Put each expression into partial fractions and finally
take the inverse Laplace transform to obtain i1(t) and i2(t):

Your solution

Answer
We find

I1(s) =
125(s + 1)

s(s + 1/2)(s + 7/2)
=

500

7s
− 125

3(s + 1/2)
− 625

21(s + 7/2)

in partial fractions.

Hence i1(t) =
500

7
− 125

3
e−t/2 − 625

21
e−7t/2

Similarly

I2(s) =
125

s(s + 1/2)(s + 7/2)
=

500

7s
− 250

3(s + 1/2)
+

250

21(s + 7/2)

which has inverse Laplace transform:

i2(t) =
500

7
− 250

3
e−t/2 +

250

21
e−7t/2

Notice in both cases that i1(t) and i2(t) tend to the steady state value
500

7
as t increases.
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Two masses on springs
Consider the vibrating system shown:

y1 y2

k m mk k

Figure 18

As you can see, the system consists of two equal masses, both m, and 3 springs of the same stiffness
k. The governing differential equations can be obtained by applying Newton’s second law (‘force
equals mass times acceleration’): (recall that a single spring of stiffness k will experience a force −ky
if it is displaced a distance y from its equilibrium.)

In our system therefore

m
d2y1

dt2
= −ky1 + k(y2 − y1)

m
d2y2

dt2
= −k(y2 − y1)− ky2

which is a pair of second order differential equations.

Task

For the above system, if m = 1, k = 2 and the initial conditions are

y1(0) = 1 y′1(0) =
√

6 y2(0) = 1 y′2(0) = −
√

6

use Laplace transforms to solve the system of differential equations to find y1(t)
and y2(t).

Begin by letting Y1(s), Y2(s) be the Laplace transforms of y1(t), y2(t) respectively and take the
transforms of the differential equations, inserting the initial conditions:

Your solution

Answer
(s2 + 4)Y1 − 2Y2 = s +

√
6

−2Y1 + (s2 + 4)Y2 = s−
√

6
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Solve these equations (e.g. by Cramer’s rule or by Gauss elimination) then use partial fractions and
finally take inverse Laplace transforms:

Your solution

(Perform the calculation on separate paper and summarise the results here.)

Answer

Y1(s) =
(s +

√
6)(s2 + 4) + 2(s−

√
6)

(s2 + 4)2 − 4
=

s

s2 + 2
+

√
6

s2 + 6

from which y1(t) = cos
√

2t + sin
√

6t

A similar calculation gives y2(t) = cos
√

2t− sin
√

6t

We see that the motion of each mass is composed of two harmonic oscillations; the system model
was undamped so, on this model, the vibration continues indefinitely.
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Engineering Example 1

Charge on a capacitor

In the circuit shown in Figure 19, the switch S is closed at t = 0 with a capacitor charge q(0) = q0 =
constant and dq/dt(0) = 0.

S AF

D B

q(t)C L

R

Figure 19

Show that q(t) = q0(t)e
−αt

[
cos ωt +

α

w
sin ωt

]
where α =

R

2L
and ω2 =

1

LC
− α2

Laplace transform properties required
The following properties are needed to solve this problem.

F (s + a) = L{e−atf(t)} (P1)

L
{

df(t)

dt

}
= s{f(t)} − f(0) (P2)

L
{

d2f(t)

dt2

}
= s2L{f(t)} − df

dt
(0)− s f(0) (P3)

L{sin kt} =
k

s2 + k2
with s > 0 (P4)

L{cos kt} =
s

s2 + k2
with s > 0 (P5)

L−1{L{f(t)}} = f(t) (P6)

STEP 1 Establish the differential equation for q(t) using, for example, Kirchhoff’s law.

Solution

When the switch S is closed, the inductance L, capacitance C and resistance R give rise to a.c.
voltages related by

VA − VB = L
di

dt
, VB − VD = R i, VD − VF = q/C respectively.

So since VA − VF = (VA − VB) + (VB − VD) + (VD − VF ) = 0 and i =
dq

dt
we have

L
d2q

dt2
+ R

dq

dt
+

q

C
= 0 (1)
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STEP 2 Write the Laplace transform of the differential equation substituting for the initial
conditions:

Solution

Since the Laplace transform is linear, the transform of differential Equation (1) is

L
{

L
d2q

dt2
+ R

dq

dt
+

q

C

}
= LL

{
d2q

dt2

}
+ RL

{
dq

dt

}
+ L{ q

C
} = 0. (2)

We deal with each derivative term in turn: Using property (P3),

L
{

d2q

dt2

}
= s2L{q(t)} − dq

dt
(0)− s q(0).

So, using the initial conditions q(0) = q0 and
dq

dt
(0) = 0

L
{

d2q

dt2

}
= s2L{q(t)} − s q0. (3)

By means of property (2)

L
{

dq

dt

}
= sL{q(t)} − q0 (4)

STEP 3 Solve for the function L{q(t)} by substituting from (3) and (4) into Equation (2):

Solution

L[s2L{q(t)} − sq0] + R[sL{q(t)} − q0] +
1

C
L{q(t)} = 0

⇒ L{q(t)}[Ls2 + Rs +
1

C
] = Lsq0 + Rq0

⇒ L{q(t)} =
(Ls + R)

(Ls2 + Rs +
1

C
)
q0 (5)

Using the definitions α =
R

2L
and ω2 =

1

LC
− α2 enables the denominator in Equation (5) to be

expressed as the sum of two squares,

L s2 + R s +
1

C
= L[s2 +

Rs

L
+

1

LC
] = L[s2 + 2αs +

1

LC
]

= L[s2 + 2αs + α2 + ω2] = L[{s + α}2 + ω2].

Consequently, with the new expression for the denominator, Equation (5) becomes

L{q(t)} = q0

[
s

(s + α)2 + ω2
+

R

L

1

(s + α)2 + ω2

]
. (6)
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STEP 4 Use the inverse Laplace transform to obtain q(t):

Solution

The inverse Laplace transform is used to find q(t).

Taking the inverse Laplace transform of Equation (6) and using the linearity properties

L−1{L{q(t)}} = q0L−1

{
s

(s + α)2 + ω2
+

R

L

1

(s + α)2 + ω2

}
.

Using property (P6) this can be written as

q(t) = q0L−1

{
s + α

(s + α)2 + ω2
+

−α

(s + α)2 + ω2
+

R

Lω

ω

(s + α)2 + ω2

}
.

Using the linearity of the Laplace transform again

q(t) = q0L−1

{
s + α

(s + α)2 + ω2

}
+ L−1

{
−α

(s + α)2 + ω2

}
+ L−1

{
R

Lω

ω

(s + α)2 + ω2

}
. (7)

Using properties (P1) and (P5)

L−1

{
s + α

(s + α)2 + ω2

}
= e−αt cos ωt. (8)

Similarly,

L−1

{
−α

(s + α)2 + ω2

}
= −(

α

ω
){e−αt sin ωt} (9)

and

L−1

{
R

Lω

ω

(s + a)2 + ω2

}
= (

R

Lω
)e−αt sin ωt. (10)

Substituting (8), (9) and (10) in (7) gives

q(t) = q0e
−αt

[
cos ωt +

{
−α

ω
+

R

Lω

}
e−αt sin ωt

]
. (11)

STEP 5 Finally, show that for t > 0 the solution is

q(t) = q0e
−αt[cos ωt + (

α

ω
) sin ωt] where α =

R

2L
and ω2 =

1

LC
− α2.

Solution

Substituting α =
R

2L
in (11) gives

q(t) = q0e
−αt

[
cos ωt + [−α

ω
+

2α

ω
]e−αt sin ωt

]
= q0e

−αt[cos ωt +
α

ω
sin ωt ]
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Engineering Example 2

Deflection of a uniformly loaded beam

Introduction
A uniformly loaded beam of length L is supported at both ends. The deflection y(x) is a function
of horizontal position x and obeys the differential equation

d4y

dx4
(x) =

1

EI
q(x) (1)

where E is Young’s modulus, I is the moment of inertia and q(x) is the load per unit length at
point x. We assume in this problem that q(x) = q (a constant). The boundary conditions are (i) no
deflection at x = 0 and x = L (ii) no curvature of the beam at x = 0 and x = L.

y(x)

x

L

q
Beam

Load

Ground y

x

Figure 20
Problem in words
In addition to being subject to a uniformly distributed load, a beam is supported so that there is no
deflection and no curvature of the beam at its ends. Applying a Laplace Transform to the differential
equation (1), find the deflection of the beam as function of horizontal position along the beam.

Mathematical formulation of the problem
Find the equation of the curve y(x) assumed by the bending beam that solves (1). Use the coordinate
system shown in Figure 1 where the origin is at the left extremity of the beam. In this coordinate
system, the mathematical formulations of the boundary conditions which require that there is no
deflection at x = 0 and x = L, and that there is no curvature of the beam at x = 0 and x = L, are

(a) y(0) = 0

(b) y(L) = 0

(c)
d2y

dx2

∣∣
x=0

= 0

(d)
d2y

dx2

∣∣
x=L

= 0
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Mathematical analysis
The following Laplace transform properties are needed:

L
{

dnf(x)

dxn

}
= snF (s)−

n∑
k=1

sk−1 dn−kf

dxn−k

∣∣∣∣∣
x=0

(P1)

L{1} = 1/s (P2)

L{xn} = n!/xn+1 (P3)

L−1 {L {f(x)}} = f(x) (P4)

To solve a differential equation involving the unknown function f(x) using Laplace transforms

(a) Write the Laplace transform of the differential equation using property (P1)

(b) Solve for the function L{f(x)} using properties (P2) and (P3)

(c) Use the inverse Laplace transform to obtain f(x) using property (P4)

Using the linearity properties of the Laplace transform, (1) becomes

L
{

d4y

dx4
(x)

}
− L{ q

EI
} = 0.

Using (P1) and (P2)

s4L{y(x)} −
4∑

k=1

sk−1 d4−ky

dx4−k

∣∣∣∣∣
x=0

− q

EI

1

s
= 0. (2)

The four terms of the sum are
4∑

k=1

sk−1 d4−ky

dx4−k
=

d3y

dx3

∣∣∣∣∣
x=0

+ s
d2y

dx2

∣∣∣∣∣
x=0

+ s2 dy

dx

∣∣∣∣∣
x=0

+ s3y(0).

The boundary conditions give y(0) = 0 and
d2y

dx2

∣∣∣∣∣
x=0

= 0. So (2) becomes

s4L{y(x)} − d3y

dx3

∣∣∣∣∣
x=0

− s2 dy

dx

∣∣∣∣∣
x=0

− q

EI

1

s
= 0. (3)

Here
d3y

dx3

∣∣∣∣∣
x=0

and
dy

dx

∣∣∣∣∣
x=0

are unknown constants, but they can be determined by using the remaining

two boundary conditions y(L) = 0 and
d2y

dx2

∣∣∣∣∣
x=L

= 0.

Solving for L{y(x)}, (3) leads to

L{y(x)} =
1

s4

d3y

dx3

∣∣∣∣∣
x=0

+
1

s2

dy

dx

∣∣∣∣∣
x=0

+
q

EI

1

s5
.
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Using the linearity of the Laplace transform, the inverse Laplace transform of this equation gives

L−1 {L{y(x)}} =
d3y

dx3

∣∣∣∣∣
x=0

× L−1

{
1

s4

}
+

dy

dx

∣∣∣∣∣
x=0

× L−1

{
1

s2

}
+

q

EI
L−1

{
1

s5

}
.

Hence

y(x) =
d3y

dx3

∣∣∣∣∣
x=0

× L−1

{
3!

1

s4

}
/3! +

dy

dx

∣∣∣∣∣
x=0

× L−1

{
1

s2

}
+

q

EI
L−1

{
4!

1

s5

}
/4!

So using (P3)

y(x) =
d3y

dx3

∣∣∣∣∣
x=0

× L−1{L{x3}}/6 +
dy

dx

∣∣∣∣∣
x=0

× L−1{L{x1}} +
q

EI
L−1{L{x4}}/24.

Simplifying by means of (P4)

y(x) =
d3y

dx3

∣∣∣∣∣
x=0

× x3/6 +
dy

dx

∣∣∣∣∣
x=0

× x +
q

EI
x4/24. (4)

To use the boundary condition
d2y

dx2

∣∣∣∣∣
x=L

= 0, take the second derivative of (4), to obtain

d2y

dx2
(x) =

d3y

dx3

∣∣∣∣∣
x=0

× x +
q

2EI
x2.

The boundary condition
d2y

dx2

∣∣∣∣∣
x=L

= 0 implies

d3y

dx3

∣∣∣∣∣
x=0

= − q

2EI
L. (5)

Using the last boundary condition y(L) = 0 with (5) in (4)

dy

dx

∣∣∣∣∣
x=0

=
qL3

24EI
(6)

Finally substituting (5) and (6) in (4) gives

y(x) =
q

24EI
x4 − qL

12EI
x3 +

qL3

24EI
x.

Interpretation
The predicted deflection is zero at both ends as required.

Note This problem was solved by an entirely different means (integrating the ODE) in 19.4,
page 65.
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